Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 154: 105144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38316232

RESUMO

Antimicrobial peptides (AMPs) are an essential part of the vertebrate innate immune system. Piscidins are a family of AMPs specific in fish. In our previous investigation, we identified four paralogous genes of piscidins in the orange-spotted grouper (Epinephelus coicodes), which exhibited distinct activities against bacteria, fungi, and parasitic ciliated protozoa. Piscidins demonstrated their capability to modulate the expression of diverse immune-related genes; however, their precise immunoregulatory functions remain largely unexplored. In this study, we examined the immunomodulatory properties of putative mature peptides derived from four E. coicodes piscidins (ecPis1S, ecPis2S, ecPis3S, and ecPis4S) in head kidney leukocytes (HKLs) or monocytes/macrophages (MO/MΦ)-like cells isolated from E. coicodes. Our data demonstrate that E. coicodes piscidins exhibit immunomodulatory activities supported by multiple lines of evidence. Firstly, all four piscidins displayed chemotactic activities towards HKLs, with the most potent chemotactic activity observed in ecPis2S. Secondly, stimulation with E. coicodes piscidins enhanced respiratory burst and phagocytic activity in MO/MФ-like cells, with ecPis3S showing the highest efficacy in increasing phagocytosis of MO/MΦ-like cells. Thirdly, mRNA expression levels of chemokine receptors, Toll-like receptors, T cell receptors, and proinflammatory cytokines were modulated to varying extents by the four piscidins in E. coicodes HKLs. Overall, our findings indicate that the immunological activities of these four paralogous piscidins from E. coicodes are exhibited in a paralog-specific and concentration-dependent manner, highlighting their distinct and versatile immunomodulatory properties. This study makes a significant contribution to the field of fish AMPs immunology by elucidating the novel mechanisms through which members of the piscidin family exert their immunomodulatory effects. Moreover, it provides valuable insights for further exploration of fish immunomodulating agents.


Assuntos
Bass , Animais , Bass/genética , Bass/metabolismo , Sequência de Aminoácidos , Peptídeos Antimicrobianos , Quimiotaxia , Explosão Respiratória , Peptídeos Catiônicos Antimicrobianos/metabolismo , Alinhamento de Sequência , Proteínas de Peixes/metabolismo , Macrófagos/metabolismo , Fagocitose
2.
Colloids Surf B Biointerfaces ; 236: 113805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422666

RESUMO

Bone implantation inevitably causes damage to surrounding vasculature, resulting in a hypoxic microenvironment that hinders bone regeneration. Although titanium (Ti)-based devices are widely used as bone implants, their inherent bioinert surface leads to poor osteointegration. Herein, a strontium peroxide (SrO2)-decorated Ti implant, Ti_P@SrO2, was constructed through coating with poly-L-lactic acid (PLLA) to alleviate the hypoxic microenvironment and transform the bioinert surface of the implant into a bioactive surface. PLLA degradation resulted in an acidic microenvironment and the release of SrO2 nanoparticles. The acidic microenvironment then accelerated the decomposition of SrO2, resulting in the release of O2 and Sr ions. O2 released from Ti_P@SrO2 can alleviate the hypoxic microenvironment, thus enhancing cell proliferation in an O2-insufficient microenvironment. Furthermore, under hypoxic and normal microenvironments, Ti_P@SrO2 enhanced alkaline phosphatase activity and bone-related gene expression in C3H10T1/2 cells with the continuous release of Sr ions. Meanwhile, Ti_P@SrO2 suppressed M1 polarization and promoted M2 polarization of bone marrow-derived monocytes under hypoxic and normal conditions. Furthermore, in a rat implantation model, the implant enhanced new bone formation and improved osteointegration after modification with SrO2. In summary, the newly designed O2- and Sr ion-releasing Ti implants are promising for applications in bone defects.


Assuntos
Próteses e Implantes , Titânio , Animais , Ratos , Titânio/farmacologia , Regeneração Óssea , Osso e Ossos , Íons , Osteogênese , Propriedades de Superfície , Estrôncio/farmacologia , Osseointegração
3.
Small ; 20(4): e2305251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37718454

RESUMO

Alternating current electroluminescence (ACEL) devices are attractive candidates in cost-effective lighting, sensing, and flexible displays due to their uniform luminescence, stable performance, and outstanding deformability. However, ACEL devices have suffered from limited options for the light-emitting layer, which presents a significant constraint in the progress of utilizing ACEL. Herein, a new class of ACEL phosphors based on lanthanide metal-organic frameworks (Ln-MOFs) is devised. A synthesis of lanthanide-benzenetricarboxylate (Ln-BTC) thin film on a brass grid substrate seeded with ZnO nanowires (NWs) as anchors is developed. The as-synthesized Ln-BTC thin film is employed as the emissive layer and shows visible electroluminescence driven by alternating current (2.9 V µm-1 , 1 kHz) for the first time. Mechanistic investigations reveal that the Ln-based ACEL stems from impact excitation by accelerated electrons from ZnO NWs. Fine-tuning of the ACEL color is also demonstrated by controlling the Ln-MOF compositions and introducing an extra ZnS emitting layer. The advances in these optical materials expand the application of ACEL devices in anti-counterfeiting.

4.
ACS Biomater Sci Eng ; 9(12): 6849-6859, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942941

RESUMO

The development of magnesium-derived biomaterials is one of the most promising research in bone tissue engineering, and related strategies have been extensively used for tendon, skull, cartilage, and bone regeneration. Also, alendronate, a well-recognized drug for osteoporosis treatment, has recently attracted a great deal of attention for bone repair. However, rapid corrosion in vivo of Mg2+ and low systemic bioavailability of alendronate are the main limitations hampering their full exploitation. In this work, by means of physical and chemical cross-linking conjugating magnesium-metal-organic frameworks (Mg-MOFs) and bone-targeting alendronate to biocompatible gelatin scaffolds, a facile method is developed for the preparation of organic/inorganic nanocomposite gel scaffolds. The results affirmed that the nanocomposite gel scaffolds possessed excellent biocompatibility, continuous slow release of Mg2+ and alendronate, strong bone affinity, and bone regeneration. It is noteworthy that the continuous slow release of Mg2+ and alendronate could induce the macrophage switch to the M2 phenotype and promote osteogenic differentiation in the early stage, resulting in improved bone regeneration during implanting the scaffolds into the distal femoral. In summary, Mg-MOFs-loaded alendronate-modified gelatin gel scaffolds have been developed, exhibiting great potential for bone regenerative.


Assuntos
Difosfonatos , Osteogênese , Difosfonatos/farmacologia , Alendronato/farmacologia , Magnésio/farmacologia , Gelatina/farmacologia , Nanogéis , Tecidos Suporte , Regeneração Óssea
5.
Plants (Basel) ; 12(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896088

RESUMO

The NAC (NAM, ATAF1/2 and CUC2) gene family is one of the largest plant-specific transcription factor families, functioning as crucial regulators in diverse biological processes such as plant growth and development as well as biotic and abiotic stress responses. Although it has been widely characterized in many plants, the significance of the NAC family in Dendrobium officinale remained elusive up to now. In this study, a genome-wide search method was conducted to identify NAC genes in Dendrobium officinale (DoNACs) and a total of 110 putative DoNACs were obtained. Phylogenetic analysis classified them into 15 subfamilies according to the nomenclature in Arabidopsis and rice. The members in the subfamilies shared more similar gene structures and conversed protein domain compositions. Furthermore, the expression profiles of these DoNACs were investigated in diverse tissues and under cold stress by RNA-seq data. Then, a total of five up-regulated and five down-regulated, cold-responsive DoNACs were validated through QRT-PCR analysis, demonstrating they were involved in regulating cold stress response. Additionally, the subcellular localization of two down-regulated candidates (DoNAC39 and DoNAC58) was demonstrated to be localized in the nuclei. This study reported the genomic organization, protein domain compositions and expression patterns of the NAC family in Dendrobium officinale, which provided targets for further functional studies of DoNACs and also contributed to the dissection of the role of NAC in regulating cold tolerance in Dendrobium officinale.

6.
IEEE Trans Med Imaging ; 42(5): 1363-1373, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015608

RESUMO

Recent studies on multi-contrast MRI reconstruction have demonstrated the potential of further accelerating MRI acquisition by exploiting correlation between contrasts. Most of the state-of-the-art approaches have achieved improvement through the development of network architectures for fixed under-sampling patterns, without considering inter-contrast correlation in the under-sampling pattern design. On the other hand, sampling pattern learning methods have shown better reconstruction performance than those with fixed under-sampling patterns. However, most under-sampling pattern learning algorithms are designed for single contrast MRI without exploiting complementary information between contrasts. To this end, we propose a framework to optimize the under-sampling pattern of a target MRI contrast which complements the acquired fully-sampled reference contrast. Specifically, a novel image synthesis network is introduced to extract the redundant information contained in the reference contrast, which is exploited in the subsequent joint pattern optimization and reconstruction network. We have demonstrated superior performance of our learned under-sampling patterns on both public and in-house datasets, compared to the commonly used under-sampling patterns and state-of-the-art methods that jointly optimize the reconstruction network and the under-sampling patterns, up to 8-fold under-sampling factor.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Extremidade Superior
7.
Materials (Basel) ; 16(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903060

RESUMO

In this study, lychee-like TiO2@Fe2O3 microspheres with a core-shell structure have been prepared by coating Fe2O3 on the surface of TiO2 mesoporous microspheres using the homogeneous precipitation method. The structural and micromorphological characterization of TiO2@Fe2O3 microspheres has been carried out using XRD, FE-SEM, and Raman, and the results show that hematite Fe2O3 particles (7.05% of the total mass) are uniformly coated on the surface of anatase TiO2 microspheres, and the specific surface area of this material is 14.72 m2 g-1. The electrochemical performance test results show that after 200 cycles at 0.2 C current density, the specific capacity of TiO2@Fe2O3 anode material increases by 219.3% compared with anatase TiO2, reaching 591.5 mAh g-1; after 500 cycles at 2 C current density, the discharge specific capacity of TiO2@Fe2O3 reaches 273.1 mAh g-1, and its discharge specific capacity, cycle stability, and multiplicity performance are superior to those of commercial graphite. In comparison with anatase TiO2 and hematite Fe2O3, TiO2@Fe2O3 has higher conductivity and lithium-ion diffusion rate, thereby enhancing its rate performance. The electron density of states (DOS) of TiO2@Fe2O3 shows its metallic nature by DFT calculations, revealing the essential reason for the high electronic conductivity of TiO2@Fe2O3. This study presents a novel strategy for identifying suitable anode materials for commercial lithium-ion batteries.

8.
Comput Med Imaging Graph ; 103: 102160, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528017

RESUMO

Owing to its merit of avoiding noise-floor, phase correction is recently used to reconstruct real-valued diffusion MRI data by employing an image filter to estimate the noise-free background phase. However, several studies report an unexpected signal-loss issue for their reconstruction results, with its causing reason still remaining unclear. Although phase correction has achieved promising results in mitigating the signal-loss issue via improving the employed image filter, we have observed counterintuitive results that an advanced filter generates severe artifacts in our previous work. Considering the potential issues with phase correction procedures, in this paper, we argue that even a perfect image filter is insufficient to produce perfect phase correction. To point out the reason why phase correction introduces signal-loss and address this issue, we first propose a complex polar coordinate system (CPCS) to analyze its procedures in detail; second, based on CPCS, we find that phase correction has not sufficiently utilized the background phase, and thus propose a quantitative criterion to fully exploit the background phase; eventually, we propose a phase calibration procedure to remedy current phase correction. Extensive experimental results, including those on synthetic and real diffusion MRI data, demonstrate that our proposed method significantly reduces signal-loss and also eliminates artifacts in FA maps, particularly with improved accuracy on FA.


Assuntos
Algoritmos , Encéfalo , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Artefatos , Processamento de Imagem Assistida por Computador/métodos
9.
Water Sci Technol ; 86(10): 2483-2494, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36450668

RESUMO

Vitamin (VM) tablets are often discarded or incinerated as medical waste, and untreated highly chlorinated wastewater is discharged, polluting the environment. In this study, Cu2+ was reduced by vitamin C (VC, a component of VM), and the precipitate formed by the reaction of its product with Cl- in water was used to remove Cl- from simulated wastewater. This allows for the resourceful use of waste VM, while also achieving the goal of dechlorinating wastewater. Meanwhile, the effect of various parameters on dechlorination was studied, and the dechlorination mechanism was analyzed. According to the results, the removal rate of Cl- increased first and then decreased with pH, removal time and reaction temperature. Using VC in VM to dechlorinate simulated wastewater, the removal rate of Cl- was 94.31% under optimum conditions: pH 2.5, temperature 30 °C and reaction time 10 minutes. According to the dechlorination process, it can be inferred that Cu2+ is reduced to Cu+ by VC, and Cu+ and Cl- coprecipitate to remove Cl-. Therefore, it is feasible to use discarded VM to treat high concentration chlorine-containing wastewater.


Assuntos
Cloretos , Águas Residuárias , Vitaminas , Comprimidos , Ácido Ascórbico
10.
Chemosphere ; 309(Pt 2): 136658, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183879

RESUMO

Microplastics (MPs) are susceptible to aging in the environment, and aged MPs are highly migratory in soil due to their smaller particle size and more negative surface charge, but the effects of soil environmental factors on the fate and transport of aged MPs are still unclear. In this study, the transport behavior of pristine/aged MPs in unsaturated sandy porous media was examined under different ionic strength (IS), cationic type (Na+, Ca2+) and humic acid (HA) conditions. The results indicated that the surface charge, surface oxygen-containing functional groups and surface morphology of MPs changed significantly after aging, and that the mobility of aged MPs was significantly enhanced than the pristine MPs under all test conditions. The retention amounts of pristine/aged MPs in unsaturated porous media increased with IS, and IS had a less inhibitory effect on the transport of aged MPs than pristine MPs. The mobility of pristine/aged MPs in Ca2+ solutions was significantly weaker than that in Na+ solutions due to enhanced straining and electrostatic adsorption. HA promoted the mobility of pristine/aged MPs in unsaturated porous media under all IS Na+ (1, 10, and 25 mM) solutions and lower IS (1 mM) Ca2+ solutions, and the ability of HA to promote the transport of aged MPs was significantly stronger than that of pristine MPs due to the higher adsorption of HA on the surface of aged MPs. However, at higher IS (10 mM) Ca2+ solution conditions, the bridging effect of Ca2+ led to the formation of HA-MPs complexes, which altered the hydrophobicity of the pristine/aged MPs surface and the pristine/aged MPs were mainly retained on the air-water interface (AWI). CFT theory and two-site kinetic retention models indicated that the retention of pristine/aged MPs in unsaturated media was dominated by monolayer adsorption, straining and clogging effects. The current research findings may provide insights into the fate and transport of aged MPs in soil and their potential risk of groundwater contamination.


Assuntos
Substâncias Húmicas , Microplásticos , Substâncias Húmicas/análise , Porosidade , Plásticos , Soluções , Solo/química , Água , Oxigênio
11.
Sci Total Environ ; 847: 157576, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882331

RESUMO

Magnetically modified biochar, with a rougher surface and more positive surface charge, may interact with microplastics (MPs) after being applied to soil, potentially altering the fate and transport of MPs in porous media. In this study, the transport and retention behavior of polystyrene microplastics (PSMPs) in a sandy porous media mixed with biochar/Fe3O4 modified biochar (Fe3O4-biochar) was investigated under various chemical conditions (humic acid (HA), ionic strength (IS) and cationic types (Na+/Ca2+)). The results showed that the addition of biochar and Fe3O4-biochar can hinder the transport of PSMPs in porous media without HA, and that Fe3O4-biochar was more effective in inhibiting the transport of PSMPs through electrostatic adsorption and complexation, with an optimum retention efficiency of 92.36 %. HA significantly attenuated the retention of PSMPs in both porous media through electrostatic repulsion, steric resistance and competitive adsorption under 1 mM Na+ solutions, and the mobility of PSMPs in Fe3O4-biochar/sand was enhanced more significantly than in biochar/sand with the increase of HA concentration. IS significantly inhibited the transport of PSMPs in both porous media in the absence of HA, but there was an antagonistic effect of HA and IS on the transport of PSMPs in the presence of HA, with the facilitative effect of HA being stronger than the inhibitory effect of IS. Ca2+ was consistently more effective in inhibiting the transport of PSMPs than Na+ under all test conditions, and HA promoted the transport of PSMPs in all Na+ solutions, while it inhibited the transport of PSMPs in high IS (10 mM) with Ca2+ solutions. In addition, HA, Fe3O4-biochar and PSMPs tend to form larger aggregates under the complex interactions of Ca2+, leading to increased retention of PSMPs in porous media. The two-site kinetic retention models suggested that the retention of PSMPs in porous media with biochar was predominantly reversible attachment effect, while retention in porous media with Fe3O4-biochar was predominantly an irreversible straining effect.


Assuntos
Microplásticos , Poliestirenos , Carvão Vegetal , Substâncias Húmicas/análise , Plásticos , Porosidade , Areia , Solo
12.
Environ Sci Pollut Res Int ; 29(56): 84675-84689, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35781665

RESUMO

A series of 60-day soil immobilized incubations were performed to explore the impacts of various factors (incubation time, chitosan modified magnetic sawdust hydrochar (CMSH) dosages, initial pH values, moisture contents, and humic acid (HA)) on CMSH immobilization of Pb and Zn. DTPA and BCR extraction techniques were undertaken to study the distribution of form transformations of Pb and Zn. CMSH showed significant immobilization ability for both DTPA-Pb and DTPA-Zn, and the highest removal rates were shown to be 57.40% and 90.00% for Pb and Zn respectively. After 60 days of incubation, the residual Pb was enhanced by 34-61% and residual Zn increased by 25-41%, which indicated that CMSH was effective in immobilizing Pb and Zn. Meanwhile, the immobilization efficiency improved with increasing incubation time, CMSH dosage, HA dosage, and initial solution pH. In particular, 5% HA application increased the soil TOC and accelerated the metal stabilization processes, with the residual forms of Pb and Zn eventually reaching a maximum of 73% and 71%, respectively. In addition, the alkaline initial solution promoted the ion exchange, surface complexation reaction, and cationic-π interaction, resulting in a better immobilization of Pb and Zn by CMSH. Finally, according to the orthogonal analysis of BCR results, HA dosage was the major factor affecting Pb and Zn immobilization by CMSH compared to soil pH and moisture content in this study.


Assuntos
Quitosana , Metais Pesados , Poluentes do Solo , Solo/química , Metais Pesados/análise , Poluentes do Solo/análise , Chumbo/análise , Substâncias Húmicas/análise , Zinco/análise , Ácido Pentético , Fenômenos Magnéticos
13.
Sci Total Environ ; 843: 157036, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772551

RESUMO

Biochar and hydrochar, as valuable and eco-friendly soil remediation materials from greenwaste, have potential to enhance methane oxidation in paddy soil. But the mechanism of biomass carbon on the improvement of methane-oxidizing bacteria communities in paddy soil has not been adequately elucidated. In the present study, the effect of different-temperature rice straw-based biomass carbon (RB400, RB600, RH250 and RH300) on methane oxidation were investigated by analyzing the soil dissolved organic matter (DOM), physicochemical properties and changes in microbial community structure. The results of the 17-day incubation experiment showed that the methane oxidation rate increased under all types of biomass carbon in the first 6 days. The enhancement of methane oxidation rate was more pronounced for biochar compared to hydrochar, with RB600 being the most effective treatment. The result of excitation-emission matrix (EEM) fluorescence spectroscopy showed that less DOM were released from the soil in the biochar treatments compared to the hydrochar treatments and protein-like were detected only in the hydrochar group. Microbial analysis further showed that hydrochar inhibited the growth of Bacillus, Methylobacter, and Methylocystis, while RB600 significantly increased the relative abundance of methanotrophs (responsible for methane oxidation), such as Methylocystis and Methylobacter, which was consistent with their different effects on the methane oxidation rate. Moreover, from the analysis of principal component analysis (PCA) and canonical correspondence analysis (CCA), Methylobacter and Methylocystis were negatively respond to H/C of biomass carbon. The present study provides a deeper understanding of the effect of biomass carbon obtained by different processes on methane oxidation when applied to soil from the perspective of organic matter and microbial communities.


Assuntos
Methylocystaceae , Oryza , Carvão Vegetal/química , Metano/análise , Solo/química , Microbiologia do Solo
14.
Risk Manag Healthc Policy ; 15: 945-954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585872

RESUMO

Background: Flexible laryngeal mask airways (FLMAs) ventilation have been widely used as airway devices during general anesthesia, especially in otologic surgery. However, the current literature reports that the clinical success and failure rates for FLMA usage are quite different, and there remains a paucity of data regarding factors associated with FLMA failure and complications related to FLMA usage. Purpose: To evaluate the success and failure rates of FLMA usage in otologic surgery, the factors associated with FLMA failure and complications related to FLMA usage. Patients and Methods: All patients who underwent otologic surgery, including middle ear and mastoid procedures, under general anesthesia at a large tertiary general hospital from 2015 to 2019 were reviewed. The primary outcome was the FLMA failure rate, defined as any airway event requiring device removal and tracheal intubation, including primary and secondary failure. The secondary outcomes were specific clinical factors, including patient sex, age, weight, American Society of Anesthesiologists (ASA) classification, body mass index (BMI) and duration of surgery, which were analyzed as related risk factors. Results: Among 5557 patients with planned FLMA use, the final success rate was 98.5%. Sixty-seven percent of the failures occurred during initial introduction of the FLMA, 8% occurred after head and neck rotation, and 25% occurred during the procedures. Two independent clinical factors associated with FLMA failure were male sex and age. Respiratory complications were observed in 0.61% of patients, and the rate of severe nerve and tissue damage associated with FLMA use was 0.05. Conclusion: This study demonstrates a high success rate of 98.5% for FLMA use in adults undergoing otologic surgery with rare adverse airway events and injuries complications. Two independent risk factors require attention and thorough and accurate management is necessary for every clinician.

16.
Environ Pollut ; 305: 119307, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452753

RESUMO

Biochar particles are extensively used in soil remediation and interact with microplastics (MPs), especially metal oxide-modified biochar may have stronger interactions with MPs. The mechanism of interactions between humic acid (HA) and different valence cations is different and the co-effect on the transport of MPs is not clear. In this study, the co-effects of HA and cations (Na+, Ca2+) on the transport and retention of MPs in saturated porous media with peanut shell biochar (PSB) and MgO-modified PSB (MgO-PSB) were systematically investigated. Breakthrough curves (BTCs) of MPs were fitted by the two-site kinetic retention model for analysis. In the absence of HA, the addition of PSB and MgO-PSB significantly hindered the transport of MPs in saturated porous media, and the retention of MPs increased from 34.2% to 59.1% and 75.5%, respectively. In Na+ solutions, the HA concentration played a dominant role in controlling MPs transport, compared to the minor role of Na+. The transport capacity of MPs always increased gradually with the increase of HA concentration. Whereas, in Ca2+ solutions, Ca2+ concentrations had a stronger effect than HA. The transport ability of MPs was instead greater than that in Na+ solutions as the HA concentration increased at low ionic strength (1 mM). However, the transport capacity of MPs was significantly reduced with increasing HA concentrations at higher ionic strength (10, 100 mM). The two-site kinetic retention model indicated that chemical attachment and physical straining are the main mechanisms of MPs retention in the saturated porous media.


Assuntos
Substâncias Húmicas , Microplásticos , Arachis , Cátions , Carvão Vegetal , Substâncias Húmicas/análise , Óxido de Magnésio , Plásticos , Porosidade , Dióxido de Silício
17.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615423

RESUMO

In this study, 20Li2O-60V2O5-(20 - x)B2O3-xBi2O3 (x = 5, 7.5, 10 mol%) glass materials have been prepared by the melt-quenching method, and the structure and morphology of the glass materials have been characterized by XRD, FTIR, Raman, and FE-SEM. The results show that the disordered network of the glass is mainly composed of structural motifs, such as VO4, BO3, BiO3, and BiO6. The electrochemical properties of the glass cathode material have been investigated by the galvanostatic charge-discharge method and cyclic voltammetry, and the results show that with the increases of Bi2O3 molar content, the amount of the VO4 group increases, and the network structure of the glass becomes more stable. To further enhance the electrochemical properties, glass-ceramic materials have been obtained by heat treatment, and the effect of the heat treatment temperature on the structure and electrochemical properties of the glass has been studied. The results show that the initial discharge capacity of the glass-ceramic cathode obtained by heat treatment at 280 °C at a current density of 50 mA·g-1 is 333.4 mAh·g-1. In addition, after several cycles of charging and discharging at a high current density of 1000 mA·g-1 and then 10 cycles at 50 mA·g-1, its discharge capacity remains at approximately 300 mAh·g-1 with a capacity retention rate of approximately 90.0%. The results indicate that a proper heat treatment temperature is crucial to improving the electrochemical properties of glass materials. This study provides an approach for the development of new glass cathode materials for lithium-ion batteries.

18.
Environ Pollut ; 294: 118655, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896220

RESUMO

As a promising amendment, biochar has excellent characteristics and can be used as a remediation agent for diverse types of soil pollution. Biochar is mostly made from agricultural wastes, forestry wastes, and biosolids (eg, sewage sludge), but not all the biochar has the same performance in the improvement of soil quality. There is a lack of guidelines devoted to the selection of biochar to be used for different types of soil pollution, and this can undermine the remediation efficiency. To shed light on this sensitive issue, this review focus on the following aspects, (i) how feedstocks affect biochar properties, (ii) the effects of biochar on heavy metals and organic pollutants in soil, and (iii) the impact on greenhouse gas emissions from soil. Generally, the biochars produced from crop residue and woody biomass which are composed of lignin, cellulose, and hemicellulose are more suitable for organic pollution remediation and greenhouse gas emission reduction, while biochar with high ash content are more suitable for cationic organic pollutant and heavy metal pollution (manure and sludge, etc.). Additionally, the effect of biochar on soil microorganisms shows that gram-negative bacteria in soil tend to use WB biochar with high lignin content, while biochar from OW (rich in P, K, Mg, and other nutrients) is more able to promote enzyme activity. Finally, our recommendations on feedstocks selection are presented in the form of a flow diagram, which is precisely intended to be used as a support for decisions on the crucial proportioning conditions to be selected for the preparation of biochar having specific properties and to maximize its efficiency in pollution control.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Carvão Vegetal , Metais Pesados/análise , Solo , Poluentes do Solo/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-32915745

RESUMO

Diagnostic pathology is the foundation and gold standard for identifying carcinomas, and the accurate quantification of pathological images can provide objective clues for pathologists to make more convincing diagnosis. Recently, the encoder-decoder architectures (EDAs) of convolutional neural networks (CNNs) are widely used in the analysis of pathological images. Despite the rapid innovation of EDAs, we have conducted extensive experiments based on a variety of commonly used EDAs, and found them cannot handle the interference of complex background in pathological images, making the architectures unable to focus on the regions of interest (RoIs), thus making the quantitative results unreliable. Therefore, we proposed a pathway named GLobal Bank (GLB) to guide the encoder and the decoder to extract more features of RoIs rather than the complex background. Sufficient experiments have proved that the architecture remoulded by GLB can achieve significant performance improvement, and the quantitative results are more accurate.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Calibragem
20.
Front Med (Lausanne) ; 8: 767625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970560

RESUMO

Computer-aided diagnosis of pathological images usually requires detecting and examining all positive cells for accurate diagnosis. However, cellular datasets tend to be sparsely annotated due to the challenge of annotating all the cells. However, training detectors on sparse annotations may be misled by miscalculated losses, limiting the detection performance. Thus, efficient and reliable methods for training cellular detectors on sparse annotations are in higher demand than ever. In this study, we propose a training method that utilizes regression boxes' spatial information to conduct loss calibration to reduce the miscalculated loss. Extensive experimental results show that our method can significantly boost detectors' performance trained on datasets with varying degrees of sparse annotations. Even if 90% of the annotations are missing, the performance of our method is barely affected. Furthermore, we find that the middle layers of the detector are closely related to the generalization performance. More generally, this study could elucidate the link between layers and generalization performance, provide enlightenment for future research, such as designing and applying constraint rules to specific layers according to gradient analysis to achieve "scalpel-level" model training.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...